Mitochondria Retrograde Signaling and the UPRmt: Where Are We in Mammals?

نویسندگان

  • Thierry Arnould
  • Sébastien Michel
  • Patricia Renard
  • Lars Olson
  • Jaime M. Ross
  • Giuseppe Coppotelli
چکیده

Mitochondrial unfolded protein response is a form of retrograde signaling that contributes to ensuring the maintenance of quality control of mitochondria, allowing functional integrity of the mitochondrial proteome. When misfolded proteins or unassembled complexes accumulate beyond the folding capacity, it leads to alteration of proteostasis, damages, and organelle/cell dysfunction. Extensively studied for the ER, it was recently reported that this kind of signaling for mitochondrion would also be able to communicate with the nucleus in response to impaired proteostasis. The mitochondrial unfolded protein response (UPR(mt)) is activated in response to different types and levels of stress, especially in conditions where unfolded or misfolded mitochondrial proteins accumulate and aggregate. A specific UPR(mt) could thus be initiated to boost folding and degradation capacity in response to unfolded and aggregated protein accumulation. Although first described in mammals, the UPR(mt) was mainly studied in Caenorhabditis elegans, and accumulating evidence suggests that mechanisms triggered in response to a UPR(mt) might be different in C. elegans and mammals. In this review, we discuss and integrate recent data from the literature to address whether the UPR(mt) is relevant to mitochondrial homeostasis in mammals and to analyze the putative role of integrated stress response (ISR) activation in response to the inhibition of mtDNA expression and/or accumulation of mitochondrial mis/unfolded proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A nuclear sensor of mitochondrial function

Mitochondria are organelles that host many metabolic processes, including the generation of energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation. They contain their own genome, however, the vast majority of mitochondrial proteins are encoded in the nucleus. Nuclei sense changes in mitochondrial functioning via retrograde signaling pathways, resulting in modified ...

متن کامل

Fragile lifespan expansion by dietary mitohormesis in C. elegans

Mitochondrial function is central to longevity and an imbalance in mitonuclear protein homeostasis activates a protective response called the mitochondrial unfolded protein response (UPRmt). Toxic compounds damaging mitochondria trigger the UPRmt, but at sublethal doses these insults extend lifespan in simple animals like C. elegans. Mitochondria are the main energy suppliers in eukaryotes, but...

متن کامل

Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies

Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and ...

متن کامل

The Mitochondrial Unfolded Protein Response as a Non-Oncogene Addiction to Support Adaptation to Stress during Transformation in Cancer and Beyond

Upon accumulation of misfolded proteins in the mitochondria, the mitochondrial unfolded protein response (UPRmt) is activated. This review focuses on the role of this response in cancer. We discuss evidence that during transformation, the UPRmt may play an essential role in the maintenance of the integrity of the mitochondria in the face of increased oxidative stress. However, the role of the U...

متن کامل

Sensing the Stress: A Role for the UPRmt and UPRam in the Quality Control of Mitochondria

Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015